Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Transl Vis Sci Technol ; 13(1): 18, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241039

RESUMO

Purpose: Canine models of inherited retinal degeneration are used for proof of concept of emerging gene and cell-based therapies that aim to produce functional restoration of cone-mediated vision. We examined functional magnetic resonance imaging (MRI) measures of the postretinal response to cone-directed stimulation in wild-type (WT) dogs, and in three different retinal disease models. Methods: Temporal spectral modulation of a uniform field of light around a photopic background was used to target the canine L/M (hereafter "L") and S cones and rods. Stimuli were designed to separately target the postreceptoral luminance (L+S) and chrominance (L-S) pathways, the rods, and all photoreceptors jointly (light flux). These stimuli were presented to WT, and mutant PDE6B-RCD1, RPGR-XLPRA2, and NPHP5-CRD2 dogs during pupillometry and functional MRI (fMRI). Results: Pupil responses in WT dogs to light flux, L+S, and rod-directed stimuli were consistent with responses being driven by cone signals alone. For WT animals, both luminance and chromatic (L-S) stimuli evoked fMRI responses in the lateral geniculate nucleus or visual cortex; RCD1 animals with predominant rod loss had similar responses. Responses to cone-directed stimulation were reduced in XLPRA2 and absent in CRD2. NPHP5 gene augmentation restored the cortical response to luminance stimulation in a CRD2 animal. Conclusions: Cone-directed stimulation during fMRI can be used to measure the integrity of luminance and chrominance responses in the dog visual system. The NPHP5-CRD2 model is appealing for studies of recovered cone function. Translational Relevance: fMRI assessment of cone-driven cortical response provides a tool to translate cell/gene therapies for vision restoration.


Assuntos
Degeneração Retiniana , Células Fotorreceptoras Retinianas Bastonetes , Cães , Animais , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Retina/diagnóstico por imagem , Visão Ocular , Degeneração Retiniana/patologia
2.
Stem Cells Dev ; 32(21-22): 681-692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470211

RESUMO

Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The Rhodopsin (RHO) is the most commonly associated pathogenic gene in RP. However, RHO mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of RHO (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line chHES-406 was demonstrated to be heterozygous for RHO c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of chHES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that chHES-406 organoids had more apoptotic cells than chHES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.


Assuntos
Retinite Pigmentosa , Rodopsina , Humanos , Rodopsina/genética , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite Pigmentosa/genética , Retinite Pigmentosa/patologia , Estresse do Retículo Endoplasmático/genética , Apoptose/genética , Mutação/genética
3.
Stem Cell Reports ; 17(11): 2421-2437, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36240775

RESUMO

Usher syndrome-associated retinitis pigmentosa (RP) causes progressive retinal degeneration, which has no cure. The pathomechanism of Usher type 1B (USH1B)-RP caused by MYO7A mutation remains elusive because of the lack of faithful animal models and limited knowledge of MYO7A function. Here, we analyzed 3D retinal organoids generated from USH1B patient-derived induced pluripotent stem cells. Increased differential gene expression occurred over time without excessive photoreceptor cell death in USH1B organoids compared with controls. Dysregulated genes were enriched first for mitochondrial functions and then proteasomal ubiquitin-dependent protein catabolic processes and RNA splicing. Single-cell RNA sequencing revealed MYO7A expression in rod photoreceptor and Müller glial cells corresponding to upregulation of stress responses in NRL+ rods and apoptotic signaling pathways in VIM+ Müller cells, pointing to the defensive mechanisms that mitigate photoreceptor cell death. This first human model for USH1B-RP provides a representation of patient retina in vivo relevant for development of therapeutic strategies.


Assuntos
Organoides , Retinite Pigmentosa , Animais , Humanos , Miosina VIIa , Organoides/patologia , Patologia Molecular , Miosinas/genética , Miosinas/metabolismo , Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
4.
Proc Natl Acad Sci U S A ; 119(11): e2118479119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275792

RESUMO

SignificanceStudies in multiple experimental systems have demonstrated that an increase in proteolytic capacity of post-mitotic cells improves cellular resistance to a variety of stressors, delays cellular aging and senescence. Therefore, approaches to increase the ability of cells to degrade misfolded proteins could potentially be applied to the treatment of a broad spectrum of human disorders. An example would be retinal degenerations, which cause irreversible loss of vision and are linked to impaired protein degradation. This study suggests that chronic activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in degenerating photoreceptor neurons could stimulate the degradation of ubiquitinated proteins and enhance proteasomal activity through phosphorylation.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteólise , Células Fotorreceptoras Retinianas Bastonetes , Retinite Pigmentosa , Ubiquitina , Animais , Modelos Animais de Doenças , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Retinite Pigmentosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo
5.
Sci Rep ; 12(1): 2897, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190581

RESUMO

Calcium regulates the response sensitivity, kinetics and adaptation in photoreceptors. In striped bass cones, this calcium feedback includes direct modulation of the transduction cyclic nucleotide-gated (CNG) channels by the calcium-binding protein CNG-modulin. However, the possible role of EML1, the mammalian homolog of CNG-modulin, in modulating phototransduction in mammalian photoreceptors has not been examined. Here, we used mice expressing mutant Eml1 to investigate its role in the development and function of mouse photoreceptors using immunostaining, in-vivo and ex-vivo retinal recordings, and single-cell suction recordings. We found that the mutation of Eml1 causes significant changes in the mouse retinal structure characterized by mislocalization of rods and cones in the inner retina. Consistent with the fraction of mislocalized photoreceptors, rod and cone-driven retina responses were reduced in the mutants. However, the Eml1 mutation had no effect on the dark-adapted responses of rods in the outer nuclear layer. Notably, we observed no changes in the cone sensitivity in the Eml1 mutant animals, either in darkness or during light adaptation, ruling out a role for EML1 in modulating cone CNG channels. Together, our results suggest that EML1 plays an important role in retina development but does not modulate phototransduction in mammalian rods and cones.


Assuntos
Movimento Celular/genética , Sobrevivência Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Cálcio/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Visão Ocular/genética
6.
Cell Death Dis ; 13(1): 47, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013127

RESUMO

Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Diltiazem/farmacologia , Degeneração Retiniana/metabolismo , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Diltiazem/química , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Camundongos , Proteólise , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
7.
Cutan Ocul Toxicol ; 41(1): 11-17, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34706603

RESUMO

Objective: Animal models are the silent scouts that help to understand the complex biological processes and gather data that aid our understanding of how organisms function. Various animal models are being sacrificed to assess the impact of toxic chemicals. Mortality calculations should be minimised and much data should be collected on the basis of clinical signs that can contribute to identifying robust humane endpoints linked to mortality. This study was designed to calculate the lowest possible dose of PbAc (lead acetate), a neurotoxicant, that can have a toxicological impact on the zebrafish retina and to minimise animal usage. Dose and time-dependent changes were observed in the zebrafish retina following PbAc exposure with zero mortality. Vision and visual behaviour response are the foremost indicators that can be recorded to mark the risk assessment of any chemical. Therefore, the present study aims at dose and time response to find the lowest dose of PbAc affecting the zebrafish retina and its visual behaviour.Materials and methods: Zebrafish were treated for 3 weeks with four concentrations of 0.04, 0.06, 0.08, and 0.1 mg/L of PbAc for a dose-response study. Then for the time response study, two doses 0.08 and 0.1 mg/L were selected and zebrafish were exposed to those concentrations for 2 and 4 weeks.Results: The results of qualitative and quantitative analyses of retinal histology showed that 15 days of treatment with 0.08 mg/L concentration can cause appropriate damage to the photoreceptor layer. At the ultrastructural level, it was further observed that PbAc induces damage to the photoreceptors, especially the rod cells. Escape response sbehaviour showed a significant decrease in visual response to changing contrasts in an increasing dose-dependent manner.Conclusion: In conclusion, it has been shown that 15 days treatment with 0.08 mg/L lead acetate induce retinal degeneration in zebrafish without causing any mortality.


Assuntos
Compostos Organometálicos , Degeneração Retiniana , Animais , Retina/patologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Peixe-Zebra/fisiologia
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884517

RESUMO

Achromatopsia (ACHM) is an inherited autosomal recessive disease lacking cone photoreceptors functions. In this study, we characterize the time-frequency representation of the full-field electroretinogram (ffERG) component oscillatory potentials (OPs), to investigate the connections between photoreceptors and the inner retinal network using ACHM as a model. Time-frequency characterization of OPs was extracted from 52 controls and 41 achromat individuals. The stimulation via ffERG was delivered under dark-adaptation (DA, 3.0 and 10.0 cd·s·m-2) to assess mixed rod-cone responses. The ffERG signal was subsequently analyzed using a continuous complex Morlet transform. Time-frequency maps of both DA conditions show the characterization of OPs, disclosing in both groups two distinct time-frequency windows (~70-100 Hz and >100 Hz) within 50 ms. Our main result indicates a significant cluster (p < 0.05) in both conditions of reduced relative power (dB) in ACHM people compared to controls, mainly at the time-frequency window >100 Hz. These results suggest that the strongly reduced but not absent activity of OPs above 100 Hz is mostly driven by cones and only in small part by rods. Thus, the lack of cone modulation of OPs gives important insights into interactions between photoreceptors and the inner retinal network and can be used as a biomarker for monitoring cone connection to the inner retina.


Assuntos
Potenciais de Ação , Defeitos da Visão Cromática/patologia , Eletrorretinografia/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Estimulação Luminosa
9.
Invest Ophthalmol Vis Sci ; 62(14): 10, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779822

RESUMO

Purpose: To use empirical data to develop a model of cell loss in choroideremia that predicts the known exponential rate of RPE loss and central, scalloped preservation pattern seen in this disease. Methods: A computational model of RPE loss was created in Python 3.7, which constructed an array of RPE cells clusters, binarized as either live or atrophic. Two rules were applied to this model: the background effect gave each cell a chance of dying defined by a background function, and the neighbor effect increased the chance of RPE cell death if a neighbor were dead. The known anatomic distribution of rods, RPE, choriocapillaris density, amacrine, ganglion, and cone cells were derived from the literature and applied to this model. Atrophy growth rates were measured over arbitrary time units and fit to the known exponential decay model. The main outcome measures: included topography of atrophy over time and fit of simulated residual RPE area to exponential decay. Results: A background effect alone can simulate exponential decay, but does not simulate the central island preservation seen in choroideremia. An additive neighbor effect alone does not simulate exponential decay. When the neighbor effect multiplies the background effect using the rod density function, our model follows an exponential decay, similar to previous observations. Also, our model predicts a residual island of RPE that resembles the topographic distribution of residual RPE seen in choroideremia. Conclusions: The pattern of RPE loss in choroideremia can be predicted by applying simple rules. The RPE preservation pattern typically seen in choroideremia may be related to the underlying pattern of rod density. Further studies are needed to validate these findings.


Assuntos
Coroideremia/patologia , Simulação por Computador , Epitélio Pigmentado da Retina/patologia , Atrofia , Contagem de Células , Humanos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Dióxido de Silício , Tomografia de Coerência Óptica , Acuidade Visual
10.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639129

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Endocitose , Exocitose , Esclerose Múltipla/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Dinaminas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fosforilação , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
11.
Elife ; 102021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668483

RESUMO

The RLBP1 gene encodes the 36 kDa cellular retinaldehyde-binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod-cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a-mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.


Assuntos
Proteínas de Transporte/genética , Doenças Retinianas/genética , Retinoides/metabolismo , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Metabolismo dos Lipídeos , Retina , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Peixe-Zebra
12.
Sci Rep ; 11(1): 18863, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552195

RESUMO

Vertebrate photoreceptors contain large numbers of closely-packed mitochondria which sustain the high metabolic demands of these cells. These mitochondria populations are dynamic and undergo fusion and fission events. This activity serves to maintain the population in a healthy state. In the event of mitochondrial damage, sub-domains, or indeed whole mitochondria, can be degraded and population homeostasis achieved. If this process is overwhelmed cell death may result. Death of photoreceptors contributes to loss of vision in aging individuals and is associated with many eye diseases. In this study we used serial block face scanning electron microscopy of adult Macaca fascicularis retinae to examine the 3D structure of mitochondria in rod and cone photoreceptors. We show that healthy-looking photoreceptors contain mitochondria exhibiting a range of shapes which are associated with different regions of the cell. In some photoreceptors we observe mitochondrial swelling and other changes often associated with cellular stress. In rods and cones that appear stressed we identify elongated domains of mitochondria with densely-packed normal cristae associated with photoreceptor ciliary rootlet bundles. We observe mitochondrial fission and mitochondrion fragments localised to these domains. Swollen mitochondria with few intact cristae are located towards the periphery of the photoreceptor inner-segment in rods, whilst they are found throughout the cell in cones. Swollen mitochondria exhibit sites on the mitochondrial inner membrane which have undergone complex invagination resulting in membranous, electron-dense aggregates. Membrane contact occurs between the mitochondrion and the photoreceptor plasma membrane in the vicinity of these aggregates, and a series of subsequent membrane fusions results in expulsion of the mitochondrial aggregate from the photoreceptor. These events are primarily associated with rods. The potential fate of this purged material and consequences of its clearance by retinal pigment epithelia are discussed.


Assuntos
Mitocôndrias/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Animais , Membrana Celular , Imageamento Tridimensional , Macaca fascicularis , Microscopia Eletrônica de Varredura , Membranas Mitocondriais , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
13.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502238

RESUMO

Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Proteínas do Olho/fisiologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite Pigmentosa/patologia , Animais , Metilação de DNA , Cães , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinite Pigmentosa/etiologia , Retinite Pigmentosa/metabolismo
14.
Mol Genet Genomic Med ; 9(10): e1795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34535971

RESUMO

BACKGROUND: Cone dystrophy with supernormal rod response (CDSRR) is an autosomal recessive retinal disorder characterized by myopia, dyschromatopsia, nyctalopia, photophobia, and nystagmus. CDSRR is caused by mutations in KCNV2, the gene encoding for an electrically silent Kv subunit (Kvs) named Kv8.2. METHODS: A Chinese CDSRR family was recruited. Complete ophthalmology clinical examinations were performed to clarify the phenotype. Genetic examination was underwent using whole exome sequencing (WES). In addition, a candidate gene was validated by Sanger sequencing. Expression analysis in vitro including immunoblotting, quantitative real-time PCR (qRT-PCR), and co-immunoprecipitation experiments was performed to investigate the pathogenic mechanism of the identified gene variants. RESULTS: WES identified two KCNV2 heterozygous mutations from the proband. Sanger sequencing validated that the patient's parents had, respectively, carried those two mutations. Further in vitro functional experiments indicated that the mutated alleles had led the Kv8.2 proteins to fail in expressing and interacting with the Kv2.1 protein, respectively. CONCLUSIONS: This study expanded the KCNV2 mutation spectrum. It can also be deduced that CDSRR has a broad heterogeneity. It is further confirmed that the inability expression of Kv8.2 proteins and the failure of Kv8.2 proteins to interact with Kv2.1 may have accounted for the etiology of CDSRR based on previous studies and this study.


Assuntos
Distrofia de Cones/diagnóstico , Distrofia de Cones/genética , Heterozigoto , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Adulto , China , Análise Mutacional de DNA , Família , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino , Imagem Óptica , Linhagem , Fenótipo , Tomografia de Coerência Óptica , Testes Visuais , Sequenciamento do Exoma
15.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440779

RESUMO

After retinal detachment (RD), the induction of autophagy protects photoreceptors (PR) from apoptotic cell death. The cytoplasmic high-mobility group box 1 (HMGB1) promotes autophagy. We previously demonstrated that the deletion of HMGB1 from rod PRs results in a more rapid death of these cells after RD. In this work, we tested the hypothesis that the lack of HMGB1 accelerates PR death after RD due to the reduced activation of protective autophagy in the retina after RD. The injection of 1% hyaluronic acid into the subretinal space was used to create acute RD in mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1Δrod) and littermate controls. RD sharply increased the number of apoptotic cells in the outer nuclear layer (ONL), and this number was further increased in HMGB1Δrod mouse retinas. The activation of autophagy after RD was reduced in the HMGB1Δrod mouse retinas compared to controls, as evidenced by diminished levels of autophagy regulatory proteins LC3-II, Beclin1, ATG5/12, and phospho-ATG16L1. The cKO of HMGB1 in rods increased the expression of Fas and the Bax/Bcl-2 ratio in detached retinas, promoting apoptotic cell death. In conclusion, endogenous HMGB1 facilitates autophagy activation in PR cells following RD to promote PR cell survival and reduce programmed apoptotic cell death.


Assuntos
Apoptose , Autofagia , Proteína HMGB1/deficiência , Descolamento Retiniano/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Proteína HMGB1/genética , Mediadores da Inflamação/metabolismo , Camundongos Knockout , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Transdução de Sinais
16.
Zool Res ; 42(4): 482-486, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34235896

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that begins with defective rod photoreceptor function, followed by impaired cone function, and complete blindness in its late stage. To date, however, there is no effective treatment for RP. By carrying a nonsense mutation in the Pde6b gene, rd1 mice display elevated cGMP in conjunction with higher intracellular Ca 2+ in their rod photoreceptors, resulting in fast retinal degeneration. Ca 2+ has been linked to activation of the mammalian target of rapamycin (mTOR) pathway. The mTOR pathway integrates extracellular and intracellular signals to sense the supply of nutrients and plays a central role in regulating protein and lipid synthesis as well as apoptosis and autophagy. In the present study, we showed that mTOR and phosphorylated mTOR (p-mTOR, activated form of mTOR) are up-regulated in rd1 photoreceptors at postnatal day 10 (P10), a pre-degenerative stage. Moreover, the downstream effectors of mTOR, such as pS6K and S6K, are also increased, suggesting activation of the mTOR signaling pathway. Intravitreal administration of rapamycin, a negative regulator of mTOR, inhibits the mTOR pathway in rd1 photoreceptors. Consequently, the progression of retinal degeneration is slower and retinal function is enhanced, possibly mediated by activation of autophagy in the photoreceptors. Taken together, these results highlight rapamycin as a potential therapeutic avenue for retinal degeneration.


Assuntos
Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/prevenção & controle , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Camundongos , Degeneração Retiniana/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico
17.
Biomolecules ; 11(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208233

RESUMO

Age-related macular degeneration (AMD) is a multifactorial disease of unclear etiology. We previously proposed that metabolic adaptations in photoreceptors (PRs) play a role in disease progression. We mimicked these metabolic adaptations in mouse PRs through deletion of the tuberous sclerosis complex (TSC) protein TSC1. Here, we confirm our previous findings by deletion of the other complex protein, namely TSC2, in rod photoreceptors. Similar to deletion of Tsc1, mice with deletion of Tsc2 in rods develop AMD-like pathologies, including accumulation of apolipoproteins, migration of microglia, geographic atrophy, and neovascular pathologies. Subtle differences between the two mouse models, such as a significant increase in microglia activation with loss of Tsc2, were seen as well. To investigate the role of altered glucose metabolism in disease pathogenesis, we generated mice with simulation deletions of Tsc2 and hexokinase-2 (Hk2) in rods. Although retinal lactate levels returned to normal in mice with Tsc2-Hk2 deletion, AMD-like pathologies still developed. The data suggest that the metabolic adaptations in PRs that cause AMD-like pathologies are independent of HK2-mediated aerobic glycolysis.


Assuntos
Degeneração Macular/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glicólise , Hexoquinase/metabolismo , Hexoquinase/fisiologia , Masculino , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/fisiologia , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/fisiologia
18.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208383

RESUMO

Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-ß regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-ß, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-ß, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.


Assuntos
Perfilação da Expressão Gênica , Neuroproteção/genética , Retinite Pigmentosa/genética , Transcrição Gênica , Regulação para Cima/genética , Animais , Quimiocina CCL2/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208617

RESUMO

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.


Assuntos
Retinite Pigmentosa/etiologia , Retinite Pigmentosa/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Suscetibilidade a Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Humanos , Camundongos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite Pigmentosa/tratamento farmacológico , Retinite Pigmentosa/patologia
20.
Exp Eye Res ; 210: 108701, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252413

RESUMO

Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Degeneração Retiniana/prevenção & controle , Proteína do Retinoblastoma/deficiência , Animais , Apoptose , Proteína Quinase CDC2/metabolismo , Sobrevivência Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Eletrorretinografia , Inibidores Enzimáticos/farmacologia , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia de Fluorescência , Purinas/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...